Inventory Control Overview

- Doctrine and Variables
- Basic EOQ Model
- Special EOQ Models
- Reorder Point Models
- Computer Applications

Why lnventory control Models?

It is not always possible for a firm to fax, e-mail, or telephone an inventory order to an external supplier and expect to receive that order within a two-hour time frame.

History

- Developed in 1912 by Ford Whitman Harris, a production engineer at Westinghouse, the U.S. electrical goods manufacturer.
- Engineer, inventor, author, and patent attorney.
- No formal education beyond high school.
- Calculus-based models that allow the firm to develop an inventory control decisisse for each material or component stocked.

Inventory Control Doctrine Objective

Inventory Control Doctrine Elements

99M豆N

Variable Interpretations

SERVICE SECTOR

Q^{*} or $E O Q$ is the optimal purchase amount from an outside vendor

MANUFACTURING

Q* or EOQ is the optimal production run or lot size

Variable Interpretations

SERVICE SECTOR

MANUFACTURING

D or D_{A} is either:
D or D_{A} is the external annual customer demand

Annual wholesaler demand or
Annual internal demand from sister divisions within the firm

Variable Interpretations

SERVICE SECTOR

MANUFACTURING

Purchase Forms Supervisor Approvals
Shipping Costs Delivery Inspections Stocking Costs Accounts Payable Processing

> S, K, Co is the fixed administrative cost of ordering \mathbf{Q}^{*} regardless of the amount
$\mathrm{S}, \mathrm{K}, \mathrm{Co}$ is the setup cost for Q^{*}

- Equipment Resets
- Worker Preps
- Lost Productivity
- Product Scrappage and Rework

Variable Interpretations

SERVICE SECTOR

H or C_{H} is the carrying or holding cost: the cost of storing one unit for one year

SALARIES AND WAGES FOR WAREHOUSE EMPLOYEES WAREHOUSE PAPER AND FORMS
WAREHOUSE DEPRECIATION
MATERIALS HANDLING COST OF CAPITAL OBSOLESCENCE INSURANCE
SPOILAGE UTILITIES
TAXES THEFT

- Daily, weekly, monthly, and annual demand are known and constant.
- No stockouts are allowed.
- No backordering is allowed.
- No physical limits on warehouse capacity.
- Lead time is constant.
- Order quantity is received all at once.
- Unit purchase price or manufacturing cost remains fixed.

Optimal Q or EOQ Formula

EOQ Formula Example

Given $D_{A}=5,000$ units $\quad H=\$ 1.00 \quad S=\$ 49.00$

$$
\begin{aligned}
Q^{*} / E O Q & =\sqrt{\frac{(2)(5000)(49.00)}{1.00}} \\
& =\sqrt{\frac{490,000}{1.00}} \\
& =700 \text { units }
\end{aligned}
$$

Inventory Modeling with QM for Windows

QM for Windows to accompany Render/Stair/Hanna's Quant Analysis for Mgt text
$\|$ File Edit Yiew Module Format Iools window Help
吅

QM for Windows

Instruction
Select a MODULE from the menu bar at the top to begin a problem set or select FILE to OP saved data set.

TO SELECT THE INVENTORY CONTROL MODELS

QM for Windows


```
QM QM for Windows
```


Create data set for Inventory/Economic Order Quantity(EOQ) Model

$\|$ Eile Edit Yiew Module Format Iools Window Help

THE DIALOGUE BOX APPEARS

```
File Edit Yiew Module Format Tools Window Help
```



```
Arial 
```

(- No reorder point
Compute reorder point

Estuction
Enter the value for the unit cost. If the holding cost is expressed as a percentage then the unit c must be strictly positive. Any non-negative value is permissible.

Parameter	Value
Demand rate(D)	5,000
SetupiOrdering cost(S)	49
Holding cost(H)	1
Unit cost	0

ANNUAL DEMAND = 5,000 UNITS
 ORDER COST = \$49.00

CARRY COST PER UNIT = $\$ 1.00$
(UNIT COST NEED NOT BE SPECIFIED)

QM for Windows - G: IEXAMPLE - BASIC EOQ MODEL.inv

EXAMPLE - BASIC EOQ MODEL - Dr. Vaccaro Solution

Parameter	Value	Parameter	Value	
Demand rate(D)	5,000	Optimal order quantity (Q^{*})	700	
SetupiOrdering cost(S)	49	Maximum Inventory Level (Imax)	700	
Holding cost(H)	1	Average inventory	350	
Unit cost	0	Orders per period(year)	7.14	
		Annual Setup cost	350	
		Annual Holding cost	350	
		Unit costs (PD)	0	
		Total Cost	700	

00
2en File Edit view Module Format Iools Window Help
Reorder point
C. No reorder point
C Compute reorder point
0

- Scale Axes

Reset to default

Total Variable Cost (TVC)

The cost of each " \mathbf{Q} " - optimal or non-optimal

 Annual Carry Costs EOI Order or Setup Costs (S)

....)AND TOTAL VARIABLE COST (TVC) IS MINIMIZED !

THE INVENTORY COST TRADEOFF

Total Variable Cost (TVC) Formula

TVC Formula Example

Given $D_{A}=1,000$ units $H=\$.50 \quad S=\$ 10.00$ and $Q^{*}($ or any $Q)=200$ units

$$
\begin{gathered}
\operatorname{TVC}=\left(\frac{200}{2} \times .50\right) \\
{[\$ 50.00]+[\$ 50.00]}
\end{gathered}
$$

$$
\$ 100.00
$$

QM for Windows

File Edit Yiew Module Format Iools window Help		
\square New	-	1 Economic Order Quantity(EOQ) Model
ξ Open	Ctrl+O	$\underline{2}$ Production Order Quantity Model
${ }^{5}$ Close		3 Quantity Discount (EOQ) Model
[. Save	Ctrl+5	4 ABC Analysis
Save ${ }_{\text {g }}$...		$\underline{5}$ Reorder Point/Safety Stock (Normal Distribution)
In Save as Excel file		$\underline{6}$ Reorder Point/'Safety Stock (Discrete Distribution)
		$\underline{7}$ Kanban computation
虚 Print	Ctrl+P	8 Single Period Inventory (Discrete Distribution)
営 Print Screen		9 Single Period Inventory (Normal Distribution)
1) Solve	F9	$\underline{2}$ Single Peniod Inentor (Nomal Distribution)

\llbracket Eile Edit Yiew Module Format Iools Window He
y. Solve FS
Exit
1 G:|EXAMPLE - QUANTITY DISCOUNT MODEL.inv
2 G:'EXAMPLE - BASIC EOQ MODEL.inv
3...\{SKELETON FORCE STRATEGY - Aggregate Planning.agg
4 ...|SKELETON FORCE STRATEGY - NEW - Agg Plan.agg

TO COMPUTE THE TOTAL VARIABLE COST, WE FIRST FIND OPTIMAL Q (EOQ)

File Edit Yiew Module Format Iools window Hell

Parameter	Value
Demand rate(D)	1000
Setup/Ordering cost(S)	10
Holding cost(H)	.50
Unit cost	0

funtilled)
ANNUAL DEMAND $=1,000$
ORDERING COST = \$10.00

CARRY COST PER UNIT = \$.50

QM for Windows

Total Variable Cost

Reorder point

- No reorder point
Compute reorder point
- Order Quantity ($0=E 0 Q$)

- Scale Axes

x minimum $\sqrt{\text { Automatic }}$
x maximum $\sqrt{\text { Automatic }}$
y minimum $\longdiv { \text { Automatic } }$
y maximum $\sqrt{\text { Automatic }}$
Γx axis grid lines
Γy axis grid lines
Redraw

Reset to default

The Reorder Point (ROP)

WHATJ ITIS

PURPOSE

Reduces or eliminates the probability of an inventory stockout during the reorder waiting period (leadtime)

Variable Interpretations

SERVICE SECTOR

MANUFACTURNG

Lead time (L) is the period between ordering and receiving purchased items

Lead time (L) is the period between starting and ending the item's production run

Reorder Point Formula

Reorder Point Example

If the firm must wait 3 days for an order to arrive, during which time, the daily average demand is 8 units, then:

$$
R O P=[d x L]=[8 \times 3]=24 \text { units }
$$

Reorder when there are 24 units still left in the account balance

IMPORTANT ADVICE,

There is no relationship between the Q* (EOQ) and the ROP (R)

Each is computed separately

The ROP is never an optimal value

It is impossible to eliminate stockouts entirely

The Inventory Cycle Chart

Graphically depicts the relationship between:

Q* / EOQ ROP

The Inventory Cycle Chart

INVENTORY
LEVEL

PICKET FENCE VERSION
$\mathbf{Q}^{*} \quad \mathbf{Q}^{*} \quad \mathbf{Q}^{*}$

The Inventory Cycle Chart

INVENTORY
LEVEL

PICKET FENCE VERSION

$$
Q^{*}=100 \quad Q^{*}=100 \quad Q^{*}=100
$$

The Average Inventory Concept

[$Q^{*} / 2$] or [Q/2] = AVERAGE INVENTORY

Variable Interpretations

SERVICE SECTOR

P or \mathbf{U} is the wholesale price per unit to the retailer

MANUFACTURING

> P or U is the manufacturing cost per unit

The Quantity Discount Model

USED WHENEVER THE FIRM IS GIVEN THE OPTION OF PURCHASING GOODS AT SEVERAL LOWER UNIT PRICES

Quantity Discount Model Expectation

QUANTITY DISCOUNT MODEL

The variable "H" must be computed as a function of :

$$
l \times P
$$

WHERE "I" IS THE UNIT CARRY COST EXPRESSED AS A FIXED PERCENTAGE OF A CHANGEABLE UNIT PRICE

A new expression
P x D

WHERE "P" IS THE UNIT PRICE MULTIPLIED BY THE ANNUAL DEMAND FOR THE UNIT

THIS IS, THE AMOUNT WE ACTUALLY PAY FOR THE GOODS THEMSELVES ANNUALLY

Changing Carry Gost per Unit

> If unit price $=\mathbf{\$ 5 . 0 0}$
$\mathrm{H}=\mathbf{\$ 1 . 0 0}$
(\$5.00 x . 20)
> If unit price $=\mathbf{\$ 4 . 8 0}$
H = \$. 96
(\$4.80 x. 20)

> If unit price $=\mathbf{\$ 4 . 7 5}$
H = \$. 95
(\$4.75 x. 20)

ASSUMING I = 20\%

Unit Carry Costs Really Do Change with Unit Price

* Obsolescence costs are less / more
* Spoilage costs are less / more
* Cost of capital to purchase the units is less / more
* Inventory taxes are less / more

THE VENDOR'S PRICE SCHEDULE

Annual Demand $=5,000$ units Order Cost $=\$ 49.00$ Carry Cost as Percentage of Unit Price = 20\%

Quantity Discount Model

 EXAMPLEStep 1 - Compute Q^{*} at each unit price, starting with the lowest price

$$
Q_{1}^{*}=\sqrt{\frac{2(5000)(49.00)}{(.20)(4.75)}}=718 \text { units }
$$

Quantity Discount Model

 EXAMPLEStep 1 - Compute Q^{*} at each unit price, with the next lowest price

$$
Q_{2}^{*}=\sqrt{\frac{2(5000)(49.00)}{(.20)(4.80)}}=714 \text { units }
$$

Quantity Discount Model

 EXAMPLEStep 1 - Compute Q^{*} at each unit price, with the next lowest price

$$
Q_{3}{ }^{*}=\sqrt{\frac{2(5000)(49.00)}{(.20)(\underline{5.00})}}=700 \text { units }
$$

Quantity Discount Model

EXAMPLE

Step 2 - Recompute the \mathbf{Q}^{*} s where necessary
$Q_{1}{ }^{*}=718$ is adjusted to $Q_{1}=2,000$ units
(to qualify for the 5\% discount)
$Q_{2}{ }^{*}=714$ is adjusted to $Q_{2}=1,000$ units
(to qualify for the 4\% discount)
$\mathrm{Q}_{3}{ }^{\boldsymbol{*}}=700$ need not be adjusted
(to qualify for the 0\% discount)

Total Cost (TC) Formula

Total Variable Costs (TVC)

Quantity Discount Model

TOTAL COST OF Q $1=2000$ UNITS

$$
\text { TC = [} \underbrace{(\mathrm{Q} / 2) \times \mathrm{H}}_{\text {ANNUAL CARRY COST }}]+[\underbrace{(\mathrm{D} / \mathbf{Q}) \times \mathrm{S}}_{\text {ANNUAL ORDER COST }}]+\underbrace{[P \times D]}_{\text {ANNUAL FIXED COST }}
$$

$=[(2000 / 2) \times(.20)(\$ 4.75)]+[(5000 / 2000) \times \$ 49.00]+[\$ 4.75 \times 5000]$

$$
=[\$ 950.00]+[\$ 122.50]+[\$ 23,750.00]
$$

$$
=\$ 24,822.50
$$

Quantity Discount Model

 TOTAL COST OF Q $\mathbf{Q}_{2} 1000$ UNITS$$
\mathrm{TC}=[(\mathrm{Q} / 2) \times \mathrm{H}]+[(\mathrm{D} / \mathrm{Q}) \times \mathrm{S}]+[\mathrm{P} \times \mathrm{D}]
$$

$=[(1000 / 2) \times(.20)(\$ 4.80)]+[(5000 / 1000) \times \$ 49.00]+[\$ 4.80 \times 5000]$

$$
=[\$ 480.00]+[\$ 245.00]+[\$ 24,000.00]
$$

$$
=\$ 24,725.00
$$

Quantity Discount Model

 TOTAL COST OF Q ${ }_{3}=700$ UNITS$$
\begin{gathered}
\mathrm{TC}=[(\mathrm{Q} / 2) \times \mathrm{H}]+[(\mathrm{D} / \mathrm{Q}) \times \mathrm{S}]+[\mathrm{P} \times \mathrm{D}] \\
=[(700 / 2) \times(.20)(\$ 5.00)]+[(5000 / 700) \times \$ 49.00]+[\$ 5.00 \times 5000] \\
=[\$ 350.00]+[\$ 350.00]+[\$ 25,000.00] \\
=\$ 25,700.00
\end{gathered}
$$

Quantity Discount Model

EXAMPLE

SUMMARY

Quantity Discount Model

EXAMPLE

SUMMARY

Quantity Discount Model

 EXAMPLEStep 4 - Select the "Q" with the lowest total cost (TC)
SINCE Q2 (1000 units) HAS THE LOWEST TOTAL COST, THE PURCHASING DECISION IS:

Inventory Modeling with QM for Windows

QM for Windows
$\|$ File Edit Yiew Module Format Iools window Help

 1 2 Production Order Quantity Model 3 Quantity Discount (EOQ) Model

4 ABC Analysis
단 Reorder Point/SSafety Stock (Normal Distribution) 6 Reorder Point/Safety Stock (Discrete Distribution)
Save as Excel file
Save as HTML
比 Print
Z Kanban computation
$\underline{8}$ Single Period Inventory (Discrete Distribution)
$\underline{2}$ Single Period Inventory (Normal Distribution)
solve ${ }^{F 9}$

Exit
1 G:\{EXAMPLE - QUANTITY DISCOUNT MODEL.inv
2 G:|EXAMPLE - BASIC EOQ MODEL.inv
3....\{SKELETON FORCE STRATEGY - Aggregate Planning.agg

4 ...|SKELETON FORCE STRATEGY - NEW - Agg Plan.agg

SELECT THE QUANTITY DISCOUNT OPTION

QM for Windows

- Instruction

Enter the cost per unit for this cost range. Any non-negative value is permissible.

THE DATA TABLE APPEARS WITH 3 PRICE RANGES PROVIDED FOR

```
Eile Edit view Module Format Iools window Help
```


- Instruction

Enter the cost per unit for this cost range. Any non-negative value is permissible.

	EXAMPLE - QUAANTITY DISCOUNT MODEL - Dr. Vaccaro			
Parameter	Value			
Demand rate(D)	5,000	xxxxxxx	xxxxxxx	
Setup/Ordering cost(S)	49	xxxxxxx	xxxxxxx	ANNUAL DEMAND $=5,000$
Holding $\operatorname{cost}(\mathrm{H})$	20\%	x x x $x \times x \times$	xxxxxxx	
Price Ranges	LOMER	UPPER	PRICE	ORDER COST = \$49.00
1	1	999	5	
2	1,000	1,999	4.8	HOLDING COST = 20\%
3	2,000	999,999	4.75	

QM for Windows - G:VEXAMPLE - QUANTITY DISCOUNT MODEL.inv
Eile Edit Yiew Module Format Iools window Help

EXAMPLE - QUANTITY DISCOUNT MODEL - Dr. Vaccaro Solution

WE PURCHASE 1,000 UNITS AT A TIME AT \$4.80 EACH, FOR THE LOWEST OVERALL TOTAL COSTS

QM for Windows - G:VEXAMPLE - QUANTITY DISCOUNT MODEL.inv

```
Eile Edit Yiew Module Format Iools Window Help
```


- Instruction

There are more results available in additional windows. These may be opened by using the W/NDOW option in the Main Menu.

THE
LOWEST TOTAL COSTS
\$24,725.00
WITH THE 4\% DISCOUNT

```
2* Eile Edit Yiew Module Format Iools Window Help
```


- Instruction

Other output can be viewed by using W/NDOW.

Inventory Control Using Excel Siolyer Software

\square
 A1 -

Assignment

Breakeven Analysis
Decision Analysis
Forecasting
Games (Zero Sum)
Inventory
Linear, Integer \& Mixed Integer Programming Markov Chains

Material Requirements Planning
Network Analysis
Project Management
Quality Control
Simulation
Statistics (mean, var, sd; Normal Dist)
Iransportation
Waiting Lines
Show/Hide Toolbar
Tools

Economic Order Quantity

Production Run Model
Quantity Discount
ABC Analysis
Reorder point;'Safety Stock (Normal Distribution)
Reorder point/Safety Stock (Discrete Distribution)
Single Period Inventory (Discrete)
Single Period Inventory (Normal)
\square
 A1 -

Assignment

Breakeven Analysis
Decision Analysis
Forecasting
Games (Zero Sum)
Inventory
Linear, Integer \& Mixed Integer Programming
Markov Chains
Material Requirements Planning
Network Analysis
Project Management
Quality Control
Simulation
Statistics (mean, var, sd; Normal Dist)
Iransportation
Waiting Lines
Show/Hide Toolbar
Tools

Economic Order Quantity
Production Run Model
Quantity Discount
ABC Analysis
Reorder point;'Safety Stock (Normal Distribution)
Reorder point/Safety Stock (Discrete Distribution)
Single Period Inventory (Discrete)
Single Period Inventory (Normal)

Breakeven Analysis ,

Decision Analysis

Spreadsheet Initialization
Title: Basic EOQ and TVC Formulal
Eorecasting
Games (Zero Sum)
Inventory
Linear, Integer \& Mixed Integer Programming Markov Chains

Material Requirements Planning
\square .
. . . .

Sheet name:
 -Options
 Reorder Point
 \checkmark Graph

Holding cost
C Fixed amount
C Percent of unit cost
J K

```
圈 File Edit Yiew Insert Format Iools Data Excel QM Render Window Help
```


》 Arial
10
－
B I $\underline{\mathbf{U}}$

B10 \quad fx 100

Inventory：Cost vs Quantity

1	Dr．Philip A．Vaccaro
2	
3	Basic EOQ and TVC Formula

Enter the data in the shaded area

B	C	D	

Data
0 Demand rate，D
11 Setup／order cost，S
12 Holding cost，H
13 Unit Price P
Daily demand rate，d
Lead time in days，L
Results ـ
\square

2100
40
10
200
20
3
28.28427125
28.28427125
14.14213562
3.535533906

Order Quantity（Q）
— Setup cost ——Holding cost - Total cost

Template and
Sample Data
 $\sqrt{33}$ • $\frac{f_{x}}{A}$
Dr. Philip A. Vaccaro
3 Basic EOQ and TVC Formula

Economic Order Quantity Model

Data

0 Demand rate, D
11 Setup/order cost, S
12 Holding cost, H
13 Unit Price, P

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Daily demand rate,
Lead time in days, L
Results
8 Optimal Order Quantity, Q*

B	C	D	

Inventory: Cost vs Quantity

J 33 • f_{x}

	A	B	C	D	E	F	G	H	I	J	K
29											
30	COST TABLE	Start at	175	Increment	58.33333						
31											
32		Q	Setup cost	Holding co	Total cost						
33		175	1400	87.5	1487.5						
34		233.3333333	1050	116.6667	1166.667						
35		291.6666667	840	145.8333	985.8333						
36		350	700	175	875						
37		408.3333333	600	204.1667	804.1667						
38		466.6666667	525	233.3333	758.3333						
39		525	466.6667	262.5	729.1667						
40		583.3333333	420	291.6667	711.6667			I			
41		641.6666667	381.8182	320.8333	702.6515						
42		700	350	350	700						
43		758.3333333	323.0769	379.1667	702.2436						
44		816.6666667	300	408.3333	708.3333						
45		875	280	437.5	717.5						
46		933.3333333	262.5	466.6667	729.1667						
47		991.66666667	247.0588	495.8333	742.8922						
48		1050	233.3333	525	758.3333						
49		1108.333333	221.0526	554.1667	775.2193						
50		1166.666667	210	583.3333	793.3333						
51		1225	200	612.5	812.5						
52		1283.333333	190.9091	641.6667	832.5758						
53		1341.666667	182.6087	670.8333	853.442						
54		1400	175	700	875						
55		1458.333333	168	729.1667	897.1667						
56		1516.666667	161.5385	758.3333	919.8718						
57											
58											
59											
60											
61											
62											
63											
64											

Inventory Control Using Excel Siolyer Software

\square
 A1 -

Assignment

Breakeven Analysis
Decision Analysis
Forecasting
Games (Zero Sum)
Inventory
Linear, Integer \& Mixed Integer Programming
Markov Chains
Material Requirements Planning
Network Analysis
Project Management
Quality Control
Simulation
Statistics (mean, var, sd; Normal Dist)
Iransportation
Waiting Lines
Show/Hide Toolbar
Tools

Economic Order Quantity

Production Run Model

Quantity Discount

ABC Analysis
Reorder point/'Safety Stock (Normal Distribution)
Reorder point/Safety Stock (Discrete Distribution)
Single Period Inventory (Discrete)
Single Period Inventory (Normal)

Breakeven Analysis

Decision Analysis
 Spreadsheet Initialization

> Title: QUANTITY DISCOUNT MODEL

Number of price ranges
(Use A for A, B, C ... or a for a, b, C ...)
Eorecasting

Games (Zero Sum)
Inventory
Linear, Integer \& Mixed Integer Programming Markov Chains

Material Requirements Planning
.. . . ,

J	K	L	M	N	C

A1 $\quad f_{x}$ Dr. Philip A. Vaccaro

Dr. Philip A. Vaccaro
 QUANTITY DISCOUNT MODEL

Inventory

Quantity Discount Model

Enter the data in the shaded area. The minimum quantity is the minimum amount that needs to be ordered in order to get the price that is in the same column.

Template and Sample Data

Total Cost vs Order Quantity

 Quantity

| 4 | 8.249579114 | 200 | 484.8732214 | 164.9915823 | 20000 | 20649.86 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 G5 $f x$

	G5 fx								
	A	B	C	D	E	F	G	H	\|
28	Total cost, T_{6}	\$25,700.00	\$24,725.00	\$24,822.50					
29									
30	Base inc on	700							
31	Cost table	Q	Unit cost	Setup cost	Holding cost	Total unit costs	Total Costs		
32	1	233.3333333	5	1050	116.6666667	25000	26166.67		
33	2	291.6666667	5	840	145.8333333	25000	25985.83		
34	3	350	5	700	175	25000	25875		
35	4	408.3333333	5	600	204.1666667	25000	25804.17		
36	5	466.6666667	5	525	233.3333333	25000	25758.33		
37	6	525	5	466.6666667	262.5	25000	25729.17		
38	7	583.3333333	5	420	291.6666667	25000	25711.67		
39	8	641.6666667	5	381.8181818	320.8333333	25000	25702.65		
40	9	700	5	350	350	25000	25700		
41	10	758.3333333	5	323.0769231	379.1666667	25000	25702.24		
42	nsitivity 11	816.6666667	5	300	408.3333333	25000	25708.33		
43	Sensitity 12	875	5	280	437.5	25000	25717.5		
44	Analvsis 13	933.3333333	5	262.5	466.6666667	25000	25729.17		
45	1S 14	991.6666667	5	247.0588235	495.8333333	25000	25742.89		
46	15	1050	4.8	233.3333333	504	24000	24737.33		
47	16	1108.333333	4.8	221.0526316	532	24000	24753.05		
48	17	1166.666667	4.8	210	560	24000	24770		
49	18	1225	4.8	200	588	24000	24788		
50	19	1283.333333	4.8	190.9090909	616	24000	24806.91		
51	20	1341.666667	4.8	182.6086957	644	24000	24826.61		
52	21	1400	4.8	175	672	24000	24847		
53	22	1458.333333	4.8	168	700	24000	24868		
54	23	1516.666667	4.8	161.5384615	728	24000	24889.54		
55	24	1575	4.8	155.5555556	756	24000	24911.56		
56									
57									
58									
59									
60									
61									
62									
63									

